Collaboration

"The objects within a program must collaborate; otherwise, the program would
consist of only one big object that does everything.”

-- RebeccaWirfs-Brock, et. al.,
Designing Object-Oriented Software,
Prentice Hall, 1990

INTRODUCTION

Collaboration, to my mind, is not discussed enough. It is one of the essential elements of
object-oriented analysis and design. As Booch says.

"Equally important [as inheritance] is the invention of societies of objects
that responsibly collaborate with one another. ... These societies form what |
call the mechanisms of a system, and thus represent strategic architectural
decisions because they transcend individual classes." [The C++ Journal, Vol. 2,
NO. 1 1992, "Interview with Grady Booch"]

Inthis articlewe will talk about what collaboarationsare and why they are soimportant. We
will discuss how collaborations are unearthed through analysis of the problem domain, and how
they are designed into the application. We will also discuss the C++ "friend" mechanism, and
how it aids the design of collaborations.

Some of the examplesin this article use a variation of the Booch Notation for describing
anaysis and design decisions. Where necessary | will digressto explain the notation.

WHAT IS COLLABORATION?

A collaboration occurs every time two or more objectsinteract. A collaboration can be as
simple as one object sending one message to another object. Or it can be aas complex as dozens
of objects exchanging messages. In fact, an entire application is really a single gigantic
collaboration involving all of the objects within it.

An object-oriented application can be broken down into a set of many different behaviors.
Each such behavior is implemented by a distinct collaboration between the objects of the
appliation. Every collaboration, no matter how small or large, alwaysimplementsa behavior of
the application that containsit.

Imagine an object-oriented application as a network of objects connected by relationships.
Collaborations are the patterns of messages that play through that network in pursuit of a
particular behavior. A collaboration can be viewed as an algorithm which spansthis network,
using many different objects and methods. The algorithm is distributed across the network of
objects, and so does not exist in any one place.

Thisisin distinct contrast to the behaviors of aclass. All behaviors pertinent to a class are
methods of that class. They exist in one place. But an object-oriented applicationis made up of
many such classes. Its behaviors are a synthesis of the individual class behaviors. So the
application's behaviors are distributed through the classes as collaborations.

This identification with the behaviors of the application gives collaborations a very central
rolein the analysisand design of object-oriented programs. It is these behaviors, after all, that
we are trying to achieve. If the collaborationswhich implement them are not properly designed,
then the application will be inaccurate or brittle.

IDENTIFYING COLLABORATIONS

Collaborations are typically unearthed during the analysis of the problem domain. The first
stepin thisprocessisto discover the primary classesand their relationships. Theseare arranged
into amodel of the static structure of the application. To test thisstructure, behavioral scenarios
are examined. In each scenario we ask which objectswill be present, and how they will respond

to one particular event. We then attempt to figure out which messages are sent between the
objects in order to handle the event. It is within these scenarios that the first hints of

collaboration are to be found.
For example, consider an application to automate a public library. The analysis of such an

application might yeild the following static model. This model is by no means complete, it
simply shows afew of the classes in the problem domain.
AR N

- N
\ Library !
N 1
-

\

-
s
==

- ‘ + -7

- -~

maintains
. R N PN .
47— 1
//"*“"t\ Ll.n P \!“ 0. ﬂ:" \\‘
L ™ ¢ LibraryCard o~~~ Borrower |
. Librarian }- *~.. List } * Identifies ™, i
N e

M -
1 Sm=

Sa=”

PR gy

Thisdiagramiscalled a classdiagram. It istypical of those produced during object-oriented
analysis. It is similar to an entity relationship diagram (ERD), except that it uses Booch
symbols. It shows the classesin the model, and the static relationships between those classes.

In this case we see that the Li br ary employs some number of Li brari ans. It adso
maintains a list of all the library cards which identify the Bor r ower s that the Li brary is
willing to loan books to.

Lets examine the behavioral scenario related to borrowing a book from the library. A
Borrower takes a book up to a Librarian and presents his or her library card with a request to
check the book out. The librarian enters the book id and library card number into a terminal.
This creates an event from which we can trace out the flow of messages through the system.

<—o Borrower
o—> LibraryCard
3-GetBorrower

:LibraryCard
List

2-GetBorrower
BL ibraryCard

Borrower

:BookCopy

:Librarian >
1-CheckOut e 5-SaLocallon
o—>LibraryCard O—> Borrower
o—>BookCo _—
by 6-SetReturnDate

4-1sAl IowedToCheckOuti
allowed I

:Borrower

Thisdiagram is called an object diagram. It shows the objects that we expect to participate
in the behavior, and shows the messages and data that flow between those objects. Note that
each message is numbered in the sequence that it occurs.

We have shown the initial event asthe CheckQut message which is sent to the
Li brari an object (message #1). The message includes the Book Copy, which is an object

which represents a particular copy of abook. The message also containstheLi br ar yCar d of
the Bor r ower . TheLi br ari an asksthe Li br ary to look up the Bor r ower from the

Li braryCard (#2), TheLi br ary inturnaskstheLi br aryCar dLi st for the same
information (#3).

Once in possession of the Bor r ower , the Li br ari an checksits status (#4), to seeif it
is allowed to check out any books. In this example, the Bor r ower is allowed to check out
books, so the Locat i on of the book isset tothe Bor r ower (#5) , and the appropriate return
date is set (#6).

This behavioral scenario is afirst step towards identifying the collaboration for checking a
book out of the library. Its purpose, at this stage, isto prove that the static model is capable of
supporting the behavior. But is also givesus avery good idea of the methods that the classes
will need in order to properly collaborate.

Every behavior of the application should be modeled in this way. From thiswork a set of
behavioral scenarios isgenerated. Each of theseis an early representation of the collaborations
within the application.

DESIGNING COLLABORATIONS

Identification is not enough. By analyzing the problem domain we have compiled a list of
proto-collaborations. Now we need to design the detailed structure of the application so that the
collaboration can be supported. This involves replacing the weak relationshipsin the analysis
model, with strong OOD relationships such as inheritance (IsA), containment (HasA) and usage
relationships. Thisis done by inspecting the behavioral scenario to see how the messages flow.

For example, the first message in the library collaboration comes to the Li br ari an from

the outside. Thisimpliessomekind of Li brari anTer m nal object which knows about the
Li brari an.

—" S~ —/’/~\ —” N~ —,’) ~
v ~ Vi ~

2 Librari =~ , =~
Iorarian 2 H :
. (e WY Librarian
\\. Terminal ! ~.
M ' M '
——— L PUPS R

N2’ AR

The black ball and double line represents a containment (HasA) relationship. The class
Li brari anTerm nal contains a Librarian. This relationship means that the
Li brarianTer m nal hasintrinsic knowledge of the Li brari an. Thisisimportant if the
Li brari anTer m nal istosend amessagetothelLi brari an.

The second message in the collaboration is between the Li br ari an and the Li brary.
Since none of the data currently flowing in the collaboration has identified a particular
Li brary object, the Li brarian must has intrinsic knowledge of the Li brary. Once
again, thisimplies containment.

N TN

-~ .

¢’ Librarian

J P J
\ . Librarian
~~., Terminal !‘ =\“\,‘ }

..... [} - ——

'
-’ _e’”
e
. ~,
’

~)
‘s, Library
'\
V eeee

s
="

Note that this relationship seems to go the "wrong" direction when compared to the analysis
model. In the analysis model the Li brary employed the Li brari an. However, in this
design, the Li brari an containsthe Li brary. Althoughthe analysis model makes perfect
sense by itself, it does not support the needed collaboration at the detailed level. Thus, the
direction of the relationship must changed to support the collaboration.

Message number 3 is sent from the Library to the LibraryCardList. Again, intrinsic
knowledge is needed, again implying containment. Moreover, we know from theanalysis model
that the LibraryCardList identifies all the Borrowers. This too implies containment.

) TR TN - e N ,—_ .

/ ‘-\
! M J -
¢ Librarian := Librarian / 'J
“~., Terminal | S Bo”ower
l‘_a" --------------
e . /
. 7’
- , ,' Library
., Library -, CardList ‘
A
Ve e
teer \;.-/"

Message number 4 representsthe Li br ar i an interrogating the Bor r ower about itsability
to borrow books. Intrinic knowledge is not implied since the Bor r ower was returned to the
Li brari an through message number 2 and 3. Thus we say that the Li br ari an uses the
Bor r ower , but doesnot containit. The using relationship, represented by the double line and
white ball, implies that the used object is somehow made available to the user via the user's
interface. By the same reasoning, messages 5 and 6 imply that the Librarian uses the class
BookCopy, since it finds out about the BookCopy from the LibrarianTerminal in message #1.

/0'-.\

¢

'\\ BookCopy :'

,,,,,,

- > - -~
e e ~\\ Kg e m TN ',,», PN

Librarian 2

v\', -~ Librari . P 3
. . ibrarian g—o—or"~
~.. Terminal r=‘~,\ C - Borrower j
\ d ' \

o’ T o T - I emmae

L 4 ’
Na - PR as
2T LT T e ¥
7 4

:;- ") - Library
s, Library P=\~. CardList !
! pemmm=t et

This design of the classes within the library model now fully supports the check-out
collaboration. Similar exercises need to occur for each of the collaborations unearthed through
the analysis.

Noticethat the static model of the analysiswas used in the creation of our collaboration, and
that the collaboration was then used to refine the static model. This oscillation between the
static and dynamic modelsistypical and essential. Weonly showed one small oscillation, but in
areal anaysisand design, the oscillations would continue many more times before the design
was considered sufficiently refined. Each changeto the static model sheds new light on the
dynamics of the collaborations. Each refinement made to the collaborations may expose
deficienciesin the static model.

TYPES OF COLLABORATION

We can classify the ways in which classes collaborate into 4 broad categories. Each of these
categories has to do with the relationships between the collaborating classes. The differences
between these 4 classifications has to do with the intimacy of the collaboration. Some
collaborations take place strictly through their public interfaces, and are therefore not very
intimate. Other collaborations require closer coupling between the participants.

*Peer - to-Peer collaborations

All the collaborations that we have studied so far have been of the Peer-to-Peer variety.
Peer-to-Peer collaborations occur when two unrelated classes exchange messages. This is the
most common form of collaboration.

Typically, peer-to-peer collaborations are not intimate; i.e. the collaboratorsdo not depend
upon special knowledge of each other. In C++, they are seldom declared as friends. Thisis not
a hard and fast rule however. Sometimesintimacy isindicated. Containers and iteratorsare an
example of peer-to-peer collaborators which are generally intimate and require friendship.

*Sibling Collabor ations

A Sibling collaboration occurs when two or more classes, derived from a common base,
exchange messages. Often such collaborationsare more intimate than the Peer-to-Peer variety,
since the objects know more about each other. For example:

e T
~
+ =

7 BookCursor {'

-
Y
’
L] PREC "
oo !
- ‘I-,\ . -
, N Rl ~. D

,,,,,,,,,,,,

‘-’

Here we see three classes derlved from the same base class; they aresiblings. The
BookCur sor base classis abstract, which is signified by the triangular icon. BookCur sor
represents the set of classes which search the library for books. The three siblings represent
different scopes in which such searches can occur. Y ou can search an entire shelf with
Shel f Cur sor, anentireaislewith Ai sl eCur sor and thewhole library with
Li braryCursor.

Notice that the siblings make use of each other in adirectional manner. The
Li braryCur sor usestheAl sl eCur sor which in-turn usesthe Shel f Cur sor . This makes
perfect sense, since searching the library is a matter of searching all the aisles, and searching an
aisleisamatter of searching all the shelves within the aidle.

Thiskind of hierarchical relationship istypical of sibiling collaborations. Each sibling builds
on the facilities of the other. However, siblings are often able to deal with peer clients as well.
When dealing with peers, the relationship is usually not as intimate as when dealing with a
sibling, so the two may use different interfaces, one more intimate than the other. For example:

o—> BookCursor o—> BookCursor

2-|nitia1§\

:BookCursor

Here we see a client sending the Sear ch message to object (x) : Li braryCQursor. The
name of the object is'x’, but the parenthesis indicate that the nameislocal to this diagram, and
not known to the rest of the design. It'skind of like alocal variable. Object 'x' responds by
sending itself thel ni ti al i ze method, which is handled by the BookCur sor base class.
This method clears a set of countersin the BookCur sor which keep track of statistics
concerning the search.

Since each of the siblings must be able to deal directly with clients, they must each respond
to the Sear ch method by initializing the base classwith thel ni ti al i ze method. However,
when we are searching the entire library, we want all the statistics gathered in the base class of
the Li br ar yCur sor object, rather than spread out through abunch of Ai sl eCur sor and
Shel f Cur sor objects. SothelLi br ar yCur sor object 'x' tellsthe Ai sl eCur sor to usethe
statistics counters in the base class of 'x'. Moreover, the Al sl eCur sor passes thisinformation
along to the Shel f Cur sor aswell. Thisinformation is passed usingthePri vat eSear ch
method, which is designed for intimate use between siblings, rather than general purpose client
access.

Since the classes have a method that they wish to keep private amongst themselves, they
should declare the method to be restricted to private access. In order for the siblings to access
the methods, they must be friends of each other. Thus we modify the class diagram to show the

friendship.
A

7 BookCursor {'

"

’
: PR
Sa2
RSP EN —’\~‘I»‘/‘\ 27NN N
v .

. .

P }’ ~ + \\\

. > . . 7 o
(“LibraryCursor'c' ﬂ \._ AisleCursor p#‘ShelfCursor {
0\ .5 > .

Ve eeas AL PPt

g

*Base-Derived collaborations

We saw a small example of a Base-Derived collaboration in the previous example. Such
collaborations occur when a derived class exchanges messages with its base. Such
collaborationsare often very intimate; base and derived classes know a ot about each other and
can take advantage of that knowledge. Such collaborations typically involve short term
violations of class invariants, i.e. they temporarily leave the classin an illegal state between
messages. But these invariants are a\ways restored prior to the end of the collaboration.

)

:BookCursor

,{itiﬂi zeDerived
1l niti% 0

LibraryCursor

Here we see an elaboration of part of the previous example. The Li br ar yCur sor object
initializes itself by sending itself the I niti al i ze message. The BookCur sor base class
handles this messageand sendsthe I ni ti al i zeDer i ved message back to the derived class
(probably via virtual deployment). Thus, the base portion of the class is initialized first, and
then the base class initializesthe derived class. In between these two messages, the object isin
an invalid state, being only partially initialized. Certainly the I niti al i zeDeri ved method
should be private and virtual.

*Auto-Collaboration

Auto-collaboration occurs when an object sends a message to itself. This is the most
intimateof all collaborations, since the object is generally talking toitself. Such collaborationis
typically used to encapsulate portions of the implementation. For example, task x may be a
component of many of the methods of class Y. Rather than coding task x in each of these
methods, it makes better sense to create a new method which performstask x. Certainly such a
method should be kept private, sinceits function is never meant to appear in isolation from the
other methods of which task x is a component.

1—Sey
(x)

LibraryCursor

SPrivaeseach
0—> BookCursor
Here we see a typical case of auto-collaboration. When a Li br ar yCur sor objectis sent
the Sear ch method, it invokes the Pri vat eSear ch method. The data item sent along is
presumably its own base class. Notice how this encapsulates the task of searching within the
Pri vat eSear ch method. No other method of this class knows the details of a search.

USING FRIENDSHIP IN COLLABORATION

In one of the examples above, we used friendship to aid the collaboration of siblings.
Friendship is also sometimes used in peer-to-peer collaborations. In early versions of C++,
before the pr ot ect ed keyword was added, friendship was also used to support base-derived
collaborations. In fact, the proliferation of base classesdeclaring their derivatives as friendswas
aprinciple factor in the decision to add pr ot ect ed access to the language.

Friendship allows unrelated classes to participate in intimate collaborations. This is
important when several classesare working together to present asingle abstraction. Asacasein
point, take the example of the Li braryCursor. This class collaborated with its sibling
Al sl eCur sor to present a single abstraction: that of searching the entire library for books.
This collaboration required that the two classes be friends.

Such multi-class abstractions are an important design technique. There are situations where
it isnot practical or possible to represent an abstraction asasingle class. A good example of this
is iterators. Container classes and their iterators represent a single abstraction. But there is
simply no good way to represent this abstraction as asingle class.

Another role of friendship is to prevent private portions of a collaboration from leaking out
into the public arena. Again, the Li br ar yCur sor class provides us with an example. The
Privat eSear ch method is a dangerous method to make public. It badly violates the
invariants of the BookCur sor abstraction. Friendship allows these dangerous functions to
remain private to the abstraction, and to be used by the friends participating in that abstraction.

When many classes collaborate, the use of friendship to solve the problems of access and
efficiency will result in classes that are bound tightly to each other. Sometimesthey can be so
tightly bound that they cannot be separated from each other.

Certainly we want to avoid, at al costs, huge networks of classes which are all friends and
which all take great liberties with each others internal parts. Such a perversion could not be
called object-oriented. Also, we want to avoid the temptation to use friendship to join two very
separate abstractions. |f such abstractions need to be joined in some way, the joining should
generally be accomplished through their interfaces, or through an intermediary class.

However, when two ore more classes are truly part of the same abstraction, then tight
binding and friendship should not be discouraged. As Rumbaugh says:. "Some object-oriented
authorsfeel that every piece of information should be attached to a single class, and they argue
that associations violate encapsulation of information into classes. We do not agree with this
viewpoint. Some information inherently transcends a single class, and the failure to treat
associations on an equal footing with classes can lead to programs containing hidden
assumptions and dependencies." [Object Oriented Modeling and Design, Rumbaugh et. a.,
Prentice Hall, 1991]

Since friendship can only be given, and cannot be taken, the choice of who to givefriendship
to becomesa design decision. This meansthat the classisdesigned to collaborate with certain
gpecial friends. The collaboratorsbecome members of ateam which work more closely together
than normal in order to achieve a single end. Thus, encapsulation is not lost, nor even
compromised. The "capsule" simply widens to enclose all the friends.

SUMMARY

In this articlewe have examined collaboration. We have shown that all the behaviorsof an
application are implemented through collaborations. We have shown how collaborationsare
first detected in the analysis phase of a project, and how their static and dynamic elements can
be expressed using the Booch notation. We have shown how the static and dynamic views can
be iterated to provide successive refinement of the application'sdesign. We have discussed the
various types of collaborations, and typical situations when they may be used. Finally we have
discussed the role of friendship in collaborations.

Collaboration is at the heart of OOA/OOD. The proper design of an object-oriented
application depends upon a thorough and detailed understanding of the collaborations which
implement its behaviors.

